Обратная пропорциональность занимает куда больше времени при изучении, чем прямая. Поэтому ученикам стоит быть готовыми к тому, что обратная пропорциональность потребует времени и усилий для решения задач. Главное — помнить основные определения и быть внимательным при решении задач.
Несколько раз в определении повторялась фраза «в столько же раз». Бывают ситуации, в особенности в физике, когда величины пропорциональны, но не имеют ярко выраженного коэффициента пропорциональности. Например, температура ведёт к увеличению внутренней энергии тела, но не прямо пропорционально. В таких ситуациях говорят, что числа пропорциональны.
Обратная пропорциональность.
И прямую, и обратную пропорциональность проще рассматривать на задачах движения. Представим себе автомобиль, который едет со скоростью 90 км/ч. Если примем расстояние между двумя городами за 180 км, то такой путь машина должна проехать за 2 часа. Пока всё понятно.
Но что будет, если водитель поспешит и увеличит скорость до 180 км/ч? Требуемый отрезок пути он проедет быстрее. То есть на то же расстояние водитель потратит не 2 часа, а 1 — увеличение скорости привело к уменьшению времени в дороге.
А что будет, если водитель уменьшит скорость в два раза, со 120 км/ч до 60 км/ч? Значит, время в пути тоже увеличится в два раза и будет составлять не 2 часа, а 4. Так уменьшение скорости привело к увеличению времени в пути.
График обратно пропорциональной зависимости
Для любой зависимости можно построить график функции.
Что такое функция? Это зависимость двух чисел. Одно из них, как правило, у, называется функцией и зависит от х, то есть аргумента.
Если представить обратную пропорциональность в виде формулы, то это будет выглядеть так:
у=к:х, где у – зависимое число или функция
х – независимое число или аргумент
к – постоянная величина, которая называется коэффициентом обратной пропорциональности.
Кстати, для приведённого нами примера коэффициентом обратной пропорциональности является величина пути между двумя городами, которую мы сделали постоянной. Если бы величина пройденного пути была плавающей, то обратной пропорциональности не получилось бы.
Пример
В качестве примера проверим, насколько верно работает приведённая формула и действительно ли она отображает обратную пропорцию. Выберем коэффициент пропорциональности, например, число 3. Тогда функция примет вид:
у=3:х. В качестве первого значения х выберем число 6, тогда у=0,5. Если мы уменьшим число х в 2 раза, то получится число 3, которому соответствует у=1. То есть в результате уменьшения х в два раза у в два раза увеличился, что полностью соответствует определению обратной пропорциональности. Для построения графика требуется несколько точек, поэтому, если по условиям задачи нужны построения, лучше записывать все значения в таблицу.
Особенно отметим, что коэффициент пропорциональности не может равняться нулю или быть отрицательным числом. А аргумент не может быть равным нулю, но отрицательным числом быть может.
Что мы узнали?
Мы поговорили о том, что такое пропорциональность. Разделили определение обратной пропорциональности и прямой пропорциональности. Привели пример обратной пропорциональной зависимости, а также записали формулу обратной пропорциональности.