Числовых подмножеств очень много даже в математике 6 класса. Проблема в том, что желательно знать и различать каждое из них. Это необходимо, так как большая часть свойств чисел выведены применительно к конкретному числовому множеству, чаще всего встречается подмножество рациональных чисел, о нем и пойдет речь сегодня.
С комплексными числами в школе почти не работают, зато широко используются действительные числа.
Действительные числа
Это подмножество в свою очередь делится на две группы :
- Рациональные числа.
- Иррациональные числа.
Чаще всего работа ведется с рациональными числами, но в особо трудных задачах, нужно работать с радикалами.
Рациональные числа
Рациональным числом называется любое число, не содержащее знака радикала, то есть корня. К рациональным числам относят:
- Натуральные числа. То есть все числа от 1 и далее. Все эти значения используются для обычного счета, поэтому и называются натуральными. В эту подгруппу не входят отрицательные числа и дроби.
- Целые. Целыми числами зовутся положительные, отрицательные значения и ноль. Дроби сюда не относятся, именно по этой причине подгруппа и имеет такое название.
- Рациональные. Помимо целых и натуральных чисел в подмножество рациональных чисел входят и дроби. Они не относятся к натуральным или целым группам, поэтому считаются просто рациональными числами.
Очень часто ученики путаются, называя рациональными числами только дроби. На самом деле, примером рационального числа могут считаться также натуральные и целые числа. Нельзя упускать два этих подмножества, это может привести к ошибкам. Запомните, рациональным числом называется любое число, не содержащее в себе знака радикала.
Иррациональные числа
Возникает вопрос, почему нельзя смешивать понятия рациональных и иррациональных чисел? Дело в том, что для иррациональных чисел действуют совсем другие законы. Приведем пример.
Как выполняется сложение рациональных чисел?
5+3=8 – все просто. Немного сложнее выглядит сложение дробей, но и там стоит разобраться только один раз и все сразу станет ясно. Но как решить такой пример:
$sqrt{5}+sqrt{3}$ – а никак. В иррациональных примерах такое выражение уже считается ответом. Если по условию задачи требуется найти ответ в действительных числах, то используется калькулятор. Само собой разумеется, что точное число получить не удастся и ответ придется округлять.
Именно поэтому приближенные вычисления нужно оставлять на конец, иначе округления дадут слишком большую разницу в финальном ответе.
Что мы узнали?
Темой сегодняшнего разговора стали «Рациональные числа». Мы выделили действительные и комплексные числа. Обговорили, что действительные числа делятся на рациональные и иррациональные. Подробно остановились на рациональных числах, рассказали, почему так важно различать рациональные и иррациональные числа. Привели пример схему, где подробно объяснили различие в действиях над рациональными и иррациональными числами.