Периметр – это сумма длин всех сторон фигуры. Эта характеристика, наравне с площадью, одинаково востребована для всех фигур. Формула периметра равнобедренного треугольника логично вытекает из его свойств, но формула не столь сложна, как получение и закрепление практических навыков.
Задача 1
- В равнобедренном треугольнике основание равно 6, а высота, проведенная к этому основанию, равна 4. Необходимо найти периметр фигуры.
Высота равнобедренного треугольника, проведенная к основанию, является также медианой и биссектрисой. Это свойство очень часто используется при решении задач, связанных с равнобедренными треугольниками.
Треугольник АВС высотой ВM делится на два прямоугольных треугольника: АВM и ВСM. В треугольнике АВM катет ВM известен, катет АM равен половине основания треугольника АВС, так как ВM является медианой, биссектрисой и высотой. По теореме Пифагора найдем значение гипотенузы АВ.
$$АВ^2=AM^2+BM^2$$
$$AB=sqrt{AM^2+BM^2}=sqrt{3^2+4^2}=sqrt{9+16}=sqrt{25}=5$$
Найдем периметр: P=AC+AB*2=6+5*2=16
Задача 2
- В равнобедренном треугольнике высота, проведенная к основанию, равна 10, а острый угол при основании 30 градусам. нужно найти периметр треугольника.
Эта задача осложнена отсутствием сведений о сторонах треугольника, но, зная значение высоты и угла, в прямоугольном треугольнике ABH можно найти катет AH, а после решение пойдет по тому же сценарию, что и в задаче 1.
Найдем AH через значение синуса:
$$sin (ABH)={BHover AB}={1over2}$$ – синус 30 градусов является табличным значением.
Выразим нужную сторону:
$$AB={{BHover {1over 2}}} =BH*2=10*2=20$$
Через котангенс найдем значение AH:
$$ctg(BAH)={AHover BH}={1oversqrt{3}}$$
$$AH={BHoversqrt{3}}=10*sqrt{3}=17,32$$ – получившееся значение округлим до сотых.
Найдем основание:
AC=AH*2=17,32*2=34,64
Теперь, когда все требуемые значения найдены, определим периметр:
P=AC+2*AB=34,64+2*20=74,64
Задача 3
- В равнобедренном треугольнике ABC известна площадь, которая равна $$16oversqrt{3}$$ и острый угол при основании 30 градусов. Найти периметр треугольника.
Значения в условии часто приводятся в виде произведения корня на число. Это делается, чтобы максимально оградить последующее решение от погрешностей. Округлять результат лучше в конце вычислений
При такой постановке задачи может показаться, что решений нет, ведь сложно выразить одну из сторон или высоту из имеющихся данных. Попробуем решить по-другому.
Обозначим высоту и половину основания латинскими буквами: BH=h и AH=a
Тогда основание будет равно: AC=AH+HC=AH*2=2a
Площадь: $$S={1over 2}*AC*BH={1over 2}*2a*h=ah$$
С другой стороны, значение h можно выразить из треугольника ABH через тангенс острого угла. Почему именно тангенс? Потому что в треугольнике ABH мы уже обозначили два катета a и h. Нужно выразить одно через другое. Два катета вместе связывают тангенс и котангенс. Традиционно к котангенсу и косинусу обращаются, только если не подходит тангенс или синус. Это не правило, можно решать так, как удобно, просто так принято.
$$tg(BAH)={hover{a}}={1oversqrt{3}}$$
$$h={aoversqrt{3}}$$
Подставим полученное значение в формулу площади.
$$S=a*h=a*{aoversqrt{3}}={(a^2)oversqrt{3}}$$
Выразим a:
$$a=sqrt{S*sqrt{3}}=sqrt{16*sqrt{3}oversqrt{3}}=sqrt{16}=4$$
Подставим значение a в формулу площади и определим значение высоты:
$$S=a*h={16oversqrt{3}}$$
$$h={Sover{a}}={{16oversqrt{3}}over{4}}={4oversqrt{3}}=2,31$$– полученное значение округлим до сотых.
Через теорему Пифагора найдем боковую сторону треугольника:
$$AB^2=AH^2+BH^2$$
$$AB=sqrt{AH^2+BH^2}=sqrt{4^2+2,31^2}=4,62$$
Подставим значения в формулу периметра:
P=AB*2+AH*2=4,62*2+4*2=17,24
Что мы узнали?
Мы разобрались подробно во всех тонкостях нахождения периметра равнобедренного треугольника. Решили три задачи разного уровня сложности, показав на примере, как решаются типовые задачи на решение равнобедренного треугольника.