Нахождение периметра прямоугольного треугольника мало чем отличается от нахождения периметра любой другой фигуры. Здесь не существует специализированной формулы, разница только лишь в подходах к решению задач.
Задача 1
- В прямоугольном треугольнике площадь равняется 24, а один из катетов равен 6. Найти периметр треугольника.
Площадь прямоугольного треугольника можно найти как половину произведения катетов. Значение площади уже есть, значит, нужно найти второй катет и гипотенузу. Обозначим катеты латинскими буквами a и b, а гипотенузу буквой c. Пусть а=6.
Тогда: $$S={1over 2}*a*b=24$$
$$S={1over 2}*6*b=24$$
$$3b=24$$
b=8
Две из трех сторон известны, а гипотенузу всегда можно найти через теорему Пифагора.
$$c^2=a^2+b^2$$
$$c=sqrt{a^2+b^2}$$
$$c=sqrt{36+64}=10$$
Найдем периметр, как сумму длин всех сторон:
P=a+b+c=10+8+6=24
Задача 2
- В прямоугольном треугольнике АВС катет АВ=8, а острый угол равен 30 градусам. Найти периметр прямоугольного треугольника.
Если в задаче дается острый угол прямоугольного треугольника, значит в любом случае в решении нужно использовать тригонометрические функции. Иначе для нахождения результата просто не хватит данных.
В этой задаче есть два возможных варианта. Острый угол может быть расположен у известного катета, а может противолежать ему. В любом случае придется использовать тригонометрические функции, но результаты могут разница. Обычно в задаче этот момент прописывается, но иногда от решающего требуется предоставить оба варианта решения. Это ясно из условия, в котором не говорится, какой из острых углов дан.
Рассмотрим вариант, при котором дан острый угол при известном катете. Тогда воспользуемся функцией косинуса:
$$Cos(BAC)={ABover AC}={sqrt{3}over2}$$
$$AC={ABover {cos(BAC)}}$$
$$AC={8over{sqrt{3}over 2}}={16oversqrt{3}}=9,24$$ – значение округлим до сотых
BC найдем через значение тангенса.
$$tg(BAC)={BCover AB}={1oversqrt{3}}$$
$$BC=AB*{1oversqrt{3}}={ABoversqrt{3}}$$
$$BC={8oversqrt{3}}=4,62$$
Вычисление периметра произведем по общей формуле:
P=8+9,24+4,62=21,86
Если острый угол противолежит известному катету, то решение будет выглядеть немного иначе.
Найдем BC через значение тангенса.
$$tg(ACB)={ABover BC}={1oversqrt{3}}$$
$$BC={ABover {1oversqrt{3}}}=AB*sqrt{3}=8*sqrt{3}=13,86$$
Гипотенузу найдем через значение синуса.
$$sin(ACB)={ABover AC}={1over 2}$$
$$AC={ABover sin(ACB)}={ABover {1over 2}}=2*AB=2*8=16$$
Если в расчетах присутствуют округления, то лучше округленный результат не использовать в дальнейших вычислениях. То есть, если мы посчитали BC, то AC лучше найти через синус, а не через косинус или теорему Пифагора, если есть такая возможность. Использование точных значений избавляет от больших погрешностей в результатах.
Что мы узнали?
Мы узнали, что отличия между формулой периметра для прямоугольного и произвольного треугольника нет. Разница в пути решения. Найти периметр прямоугольного треугольника можно через теорему Пифагора, площадь или тригонометрические функции, можно комбинировать различные методы между собой. Главное, это возможность решения задачи без дополнительных построений.