Биссектриса треугольника

Биссектриса треугольника

Биссектриса является одним из основных понятий курса геометрии. Особая роль отводится понятию биссектрисы угла треугольника. В статье мы познакомимся с понятием биссектрисы, с ее свойствами, а затем решим задачу для закрепления материала.

При пересечении двух биссектрис внутреннего и внешнего угла, получается угол 900. Внешний угол в треугольнике угол, смежный с внутренним углом треугольника.

Биссектриса треугольника

Рис. 1. Треугольник, в котором проведены 3 биссектрисы

Биссектриса делит противоположную сторону на два отрезки, которые имеют связь со сторонами:

$${CLover{LB}} = {ACover{AB}}$$

Точки биссектрисы равноудаленные от сторон угла, это значит, что они находятся на одинаковом расстоянии от сторон угла. То есть, если из любой точки биссектрисы опустить перпендикуляры на каждую из сторон угла треугольника, то эти перпендикуляры будут равны..

Если с одной вершины провести медиану, биссектрису и высоту, то медиана будет самым длинным отрезком, а высота самым коротким.

Некоторые свойства биссектрисы

В определенных видах треугольников, биссектриса имеет особые свойства. В первую очередь это относится к равнобедренному треугольнику. Эта фигура имеет две одинаковые боковые стороны, а третья называется основанием.

Если из вершины угла равнобедренного треугольника провести биссектрису к основанию, то она будет иметь свойства одновременно и высоты и медианы. Соответственно, длина биссектрисы совпадает с длиной медианы и высоты.

Определения:

  • Высота – перпендикуляр, опущенный из вершины треугольника к противоположной стороне..
  • Медиана – отрезок, который соединяет вершину треугольника и середину противоположной стороны.

Биссектриса треугольника

Рис. 2. Биссектриса в равнобедренном треугольнике

Это касается и равностороннего треугольника, то есть треугольника, в котором все три стороны равны.

Пример задания

В треугольнике ABC: BR биссектриса, причем AB = 6 см, BC = 4 см, а RC = 2 см. Вычесть длину третей стороны.

Биссектриса треугольника

Рис. 3. Биссектриса в треугольнике

Решение:

Биссектриса делит сторону треугольника в определенной пропорции. Воспользуемся этой пропорцией и выразим AR. После найдем длину третьей стороны как сумму отрезков, на которые эту сторону поделила биссектриса.

  • ${ABover{BC}} = {ARover{RC}}$
  • $RC={6over{4}}*2=3 см$

Тогда весь отрезок AC = RC+ AR

AC = 3+2=5 см.

В равнобедренном треугольнике биссектриса, проведенная к основанию, делит треугольник на два равных прямоугольных треугольника.

Что мы узнали?

Изучив тему биссектрисы, мы узнали, что она делит угол на два равных угла. А если ее провести в равнобедренном либо равностороннем треугольнике к основанию, то она будет иметь свойства и медианы и высоты одновременно.

Предыдущая
МатематикаПримеры вычитания векторов с использованием правила треугольника
Следующая
МатематикаЧетные цифры
Спринт-Олимпик.ру