Десятичная система счисления

Все вычисления в математике выполняются в позиционной десятичной системе счисления. Кратко об особенностях десятичной системы можно прочитать в данной статье.

Десятичная система счисления

Рис. 1. Индийские цифры, эволюция индийских цифр.

Развернутая форма представления десятичного числа

Важным понятием в позиционном подходе представления чисел является понятие разряда. Различают разряды единиц, десятков, сотен, тысяч и так далее. Любое десятичное число можно представить, в так называемом развернутом виде, когда число записывается в виде суммы разрядных слагаемых, представленных в виде произведения значащей цифры разряда и числа десять в степени соответствующего разряда.

Например, десятичное число 46758 в развернутом виде будет выглядеть следующим образом:

46758 = 4 * 10^4 + 6 * 10^3 + 7 * 10^2 + 5 * 10^1 + 8 * 10^0

Или так:

46758 = 4 * 10000 + 6 * 1000 + 7 * 100 + 5 * 10 + 8 * 1

Прямой перевод числа из десятичной системы

Перевод целого десятичного числа в какую-либо систему счисления выполняется путем поочередного деления самого числового значения, а затем полученных частных на основание системы счисления, в которую производится перевод.

Например, для перевода десятичного числа в двоичную систему выполняют деление на два, в восьмеричную – на восемь, в шестнадцатеричную – на шестнадцать. В принципе, десятичное число можно перевести и в пятеричную и семеричную системы, выполнив деление на пять или семь.

Выполнив первый шаг деления на, например, два, остаток запоминают, а полученное частное снова делят на основание. Эту операцию выполняют до тех пор, пока последнее частное не будет меньше или равно делителю.

Записывать сформированное число в новой системе счисления необходимо начиная с итогового частного и затем друг за другом выписывая остатки от деления от последнего к первому.

Например, прямой перевод числа 27 из десятичной системы в двоичную выполняют так:

27 / 2 = 13 и остаток 1

13 / 2 = 6 и остаток 1

6 / 2 = 3 и остаток 0

3 / 2 = 1 и остаток 1

Таким образом, 27 в двоичном формате это число 11011.

Для перевода чисел в пределах можно пользоваться таблицей соответствия десятичных и двоичных чисел

Десятичная система счисления

Рис. 2. Таблица соответствия двоичных и десятичных чисел.

Обратный перевод числа в десятичную систему

Для перевода чисел в десятичную систему удобно пользоваться развернутой формой. При этом числовые значения записываются в виде суммы произведений цифр разрядов на основание текущей системы счисления в степени разряда.

Например, двоичное число 11011 можно представить так:

1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0 = 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 1 * 1 =27

Для упрощения вычислений удобно пользоваться таблицей степени двойки

Десятичная система счисления

Рис. 3. Степени двойки.

Что мы узнали?

В десятичной позиционной системе для представления числовых значений используются десять арабских цифр. Числа в такой системе можно представлять в развернутом виде. Перевод десятичных чисел в другую систему выполняется путем поочередного деления на основание новой системы счисления. Обратный перевод удобно выполнять с использованием развернутой формы записи числа.

Предыдущая
ИнформатикаАлгоритм Евклида
Следующая
ИнформатикаДвоичная арифметика

От admin