Средняя линия прямоугольного треугольника – это прекрасная возможность для составителей задач. Большая часть обучающихся знают, что такое средняя линия и умело используют ее свойства в решении. Но как только этот отрезок появляется на чертеже прямоугольного треугольника, то сразу впадают в ступор из-за некоторой необычности рисунка, поэтому разберемся в теме подробнее.
Только из-за необычности чертежа
Средняя линия
Что такое средняя линия? Это один из характеризующих отрезков любого треугольника. Средняя линия соединяет середины смежных сторон многоугольника.
Средняя линия есть не только у треугольника. Она существует у каждой выпуклой фигуры. При этом свойства средних линий треугольников не всегда совпадают с свойствами средних линий трапеций. Поэтому будьте аккуратны, у каждой фигуры есть свои свойства и признаки.
Свойства средней линии
Свойств у средней линии не так много, но все они более чем интересны.
- Средняя линия всегда параллельна стороне, через которую она не проходит. Иначе говорят, что средняя линия параллельна основанию. Так проще запомнить это свойство, но немного страдает формулировка. Дело в том, что в любом треугольнике можно провести 3 средних линии, а основание только одно, поэтому будьте аккуратнее в формулировках.
- Средняя линия равна половине основания. А вернее не основания, а стороны, которую средняя линия не пересекает. Это и есть формула средней линии любого треугольника, в том числе и прямоугольного.
- Средняя линия отсекает треугольник подобный изначальному с коэффициентом подобия 1:2
Если формулировка «Средняя линия параллельна основанию» не совсем правильная, то почему же ее применяют в учебнике? Дело в том, что любое свойство должно быть коротким и ясным для простоты запоминания. Поэтому и сокращают некоторые высказывания. А основанием произвольного треугольника можно считать любую сторону, а значит неправильной формулировку назвать нельзя.
Задача
В прямоугольном треугольнике АВС проведены три средние линии: MN; NP; MP. В получившемся прямоугольнике MNPA известно, что синус угла между диагоналями равен 0,5. А средние линии MN и NP равны 3 и 4 соответственно. Найти площадь большого прямоугольного треугольника.
В прямоугольнике две диагонали между собой равны. Одна из диагоналей MP это гипотенуза прямоугольного треугольника MNP. Катеты треугольника известны, значит можно найти гипотенузу через теорему Пифагора.
$$MP=sqrt{MN^2+NP^2}=sqrt{9+16}=sqrt{25}=5$$
Найдем площадь прямоугольника, как произведение диагоналей на синус угла между ними.
$$S=5*5*0,5=12,5$$
В большом треугольнике 4 малых, а в прямоугольнике 2 малых треугольника. Все малые треугольники между собой равны, значит, чтобы найти площадь прямоугольного треугольнику, нужно умножить площадь прямоугольника на 2.
$S=12,5*2=25$ – ответ получен.
Что мы узнали?
Мы узнали, что такое средняя линия прямоугольного треугольника. Поговорили о свойствах средней линии и решили небольшую задачу для закрепления материала.