Уравнение равномерного движения

Уравнение равномерного движения

Из курса физики 9 класса известно, что равномерное движение — это движение, при котором за одинаковые промежутки времени материальная точка проходит одинаковые расстояния. Описание такого движения в формульном виде наиболее простое, поэтому изучение кинематики начинают с него. Кратко рассмотрим виды уравнений равномерного движения.

Более сложным видом движения является вращательное движение — то есть такое движение, при котором траектория движения представляет собой окружность или её часть. Направление вектора скорости при движении по окружности постоянно меняется, поэтому одной координатной осью здесь обойтись нельзя. Более того, проекция вектора скорости на любую из координатных осей будет непостоянна во времени, уравнения получаются достаточно сложными.

Выйти из затруднения можно, если учесть, что при равномерном движении по окружности постоянным во времени является угол поворота. И он не зависит от радиуса окружности. Если использовать не линейные, а угловые величины, уравнения движения получаются так же просты, как и в случае прямолинейного движения, и аналогичны им.

Уравнение равномерного движения

Рис. 2. Прямолинейное и вращательное движение.

Уравнения равномерного движения

Приведём уравнения для прямолинейного и вращательного движения и убедимся в их аналогии. Для уравнения равномерного движения формула координаты выводится из определения скорости.

Прямолинейное движение

Скорость равна отношению перемещения к промежутку времени, за которое оно произошло, и при равномерном движении она постоянна:

$$v={Delta x over Delta t }$$

Для прямолинейного движения перемещение равно разности координат. Следовательно:

$$v={x-x_0 over t }$$

Откуда получаем окончательно:

$$x= x_0 + vt$$

Вращательное движение

Для вращательного движения, как говорилось выше, перемещение и скорость берутся угловыми. Следовательно:

$$omega={Delta alpha over Delta t }$$

Разность угла в числителе равна:

$$Delta alpha = alpha – alpha_0$$

Подставляя это уравнение в предыдущее, получаем:

$$omega={alpha – alpha_0 over Delta t }$$

И окончательно имеем:

$$alpha = alpha_0 + omega t$$

Можно видеть, что уравнение равномерного вращательного движения полностью аналогично уравнению равномерного прямолинейного движения, где все линейные величины заменены на угловые: угол соответствует расстоянию, а скорость соответствует угловой скорости.

Уравнение равномерного движения

Рис. 3. Аналогия между линейными и угловыми величинами.

Что мы узнали?

Равномерное движение — это движение, при котором за одинаковые промежутки времени перемещения одинаковы. Равномерное движение может быть прямолинейным или вращательным. Уравнения равномерного движения здесь аналогичны, только для первого случая используются линейные величины, а для второго — угловые.

Предыдущая
ФизикаУравнение Менделеева-Клапейрона
Следующая
ФизикаУравнение равномерного прямолинейного движения
Спринт-Олимпик.ру