Любые конструкции, используемые в технике, должны выдерживать заданные нагрузки. Для правильного расчета конструкций необходимо знать механические свойства твердых тел и законы, которые описывают их поведение. Кратко рассмотрим эту тему.
Поскольку количество связей пропорционально площади сечения разрываемого образца, появляется возможность ввести специальный параметр, характеризующие эти силы – «механическое напряжение» (или просто «напряжение»).
Механическое напряжение равно отношению силы разрыва, приложенной к образцу, к поперечной площади разрываемого образца:
$$sigma ={Fover S}$$
Из данной формулы можно получить размерность механического напряжения. Поскольку сила измеряется в ньютонах, а площадь в квадратных метрах, единица напряжения получается равной ньютону на квадратный метр или паскалю.
Заметим, что деформация может быть не только разрывной, но с сжимающей, формула и размерность напряжения останутся прежними.
Закон Гука
Итак, при упругой деформации кристалла, возникают силы, стремящиеся вернуть кристалл в ненапряженное состояние. Опыты показывают, что силы эти тем больше, чем больше деформация. То есть, механическое напряжение $sigma$ кристалла пропорционально его относительному удлинению:
$$sigma =E{|Δl|over l_0}$$
Данный закон был установлен в 1660 Р.Гуком, и носит его имя.
Модуль Юнга и жесткость
Коэффициент пропорциональности $E$ в формуле называется модулем Юнга, его физический смысл в том, что это напряжение, возникающие в кристалле при единичном относительном удлинении (или при удвоении абсолютного линейного размера кристалла). Единица его измерения такая же, как и у напряжения – паскаль.
Часто для характеристики упругих элементов удобнее использовать не модуль Юнга, а такой параметр, как жесткость, равную силе, возникающей при растяжении на единичную длину.
Связь между модулем Юнга и жесткостью легко вывести из закона Гука. Подставим в формулу Закона Гука выражение для механического напряжения, приведенное выше:
$${Fover S} =E{|Δl|over l_0}$$
Откуда:
$$F ={ESover l_0}|Δl|=k|Δl|$$
Таким образом, жесткость пружины прямо пропорциональна модулю Юнга:
$$k ={ESover l_0}$$
Пределы пропорциональности и упругости.
Закон Гука хорошо выполняется для небольших деформаций, пока ковалентные связи в кристалле не нарушены. Максимальное напряжение, при котором закон Гука полностью выполняется, называется пределом пропорциональности.
Если кристалл продолжать деформировать дальше – изменение напряжения становится нелинейным, а затем, связи начинают разрываться, в результате кристалл уже не возвращается к своему прежнему состоянию, и некоторые остаточные деформации в нем остаются и после снятия.
Максимальное напряжение, при котором в кристалле после снятия усилия не остается заметных остаточных деформаций, называется пределом упругости. Как правило, пределы пропорциональности и упругости для большинства веществ отличаются менее, чем на 1%, при решении задач по физике в 10 классе школы их можно считать равными.
Что мы узнали?
При деформации в кристалле возникают силы, сопротивляющиеся деформации. Закон, связывающий механическое напряжение с удлинением кристалла, называется законом Гука. Этот закон действует до некоторого максимального значения (предела пропорциональности). Коэффициент пропорциональности в законе Гука называется модулем Юнга. Модуль Юнга прямо пропорционален жесткости кристалла.