Свойства вычитания – правила и примеры для 5 класса

Одним из фундаментальных законов арифметики является свойство вычитания. В 5 классе средней школы с ним знакомят учащихся на уроках математики. Для успешного освоения быстрого счета нужно не только знать правила, но и уметь применять их. Поэтому при изучении темы необходимо уделить достаточно внимания практическим занятиям.

Свойства вычитания - правила и примеры для 5 класса

Понятие действия

Вычитание — бинарная операция, результатом выполнения которой является число, называемое разностью. В действии участвуют два аргумента: один из них — уменьшаемое, а другой — вычитаемое. Ответ получается путем уменьшения значения одного аргумента на второй. Уменьшаемое располагается слева, а вычитаемое — справа. Обозначают операцию знаком минус, который ставят между двумя числами. По сути, уменьшение — это действие, обратное сложению.

При операции вычитания используют три термина:

Свойства вычитания - правила и примеры для 5 класса

  • Разность — ответ, полученный после выполнения действия.
  • Уменьшаемое — часть выражения, которое нужно уменьшить.
  • Вычитаемое — определяет величину уменьшения.
  • Стоит отметить, что результат вычитания может быть как положительным, так и отрицательным. Рассмотреть процесс уменьшения удобно на примере:

    Пусть в вазе лежит восемь яблок. Если три штуки забрать, то в вазе останется пять.

    Математическая запись такого действия будет выглядеть как 8 — 3 = 5. В ней число восемь является уменьшаемым, три — вычитаемым, а пять — разностью (результатом). Произносится эта запись так: разность восьми и трёх равняется пяти.

    Применение вычитание также позволяет сравнивать два числа. Пытаясь вычислить, какое число больше, а какое меньше, фактически определяют ту часть выражения, где находится больше единиц. Найти же, какое число больше или меньше другого, можно как раз вычитанием. Например для того чтобы узнать, насколько 50 меньше 80, нужно из последнего вычесть первое: 80 — 50 = 30. То есть второе число больше первого на тридцать единиц.

    Так как уменьшение — это операция, обратная суммированию (прибавлению), то проверкой вычитания будет сумма. Пусть дано равенство: 66 — 13 = 43. Чтобы проверить его верность, можно к тринадцати (вычитаемому) прибавить разность (ответ). В результате должно получиться число, равное уменьшаемому. Для рассматриваемого примера проверка выглядит следующим образом: 13 + 43 = 66. Осуществить проверку можно и другим способом. Для этого необходимо уменьшаемое уменьшить на разность. Если после действия ответ совпадет с вычитаемым, то задание решено верно: 66 — 43 = 13.

    Уменьшение многозначных чисел обычно выполняют в столбик. Для этого друг под другом пишут уменьшаемое и вычитаемое таким образом, чтобы разряды чисел находились строго один под одним. Затем проводят черту и, начиная с наименьшего разряда, выполняют минусование. Результат записывают под чертой.

    Свойства уменьшения

    Основная формула вычитания имеет следующий вид: a — b = c. При этом справедливыми будут утверждения: с + b = a и a — c = b. Числа, подставляемые в формулу, могут быть любыми, например натуральными, дробными, рациональными. Но вычитать можно только те аргументы, которые принадлежат одному множеству, то есть относятся к одному типу. Действие характеризуется несколькими важными свойствами:

    Свойства вычитания - правила и примеры для 5 класса

  • Вычитание нулевого элемента не изменит уменьшаемое. Если же уменьшается ноль, то в ответе получится вычитаемое с отрицательным знаком. Таким образом, при вычитании некого числа аргумент уменьшается на определенное число единиц. Если же из уменьшаемого отнять такое же число, то результатом будет ноль. Математические записи, описывающие эти свойства, следующие: a — 0 = a; a — a = 0; 0 — a = -a.
  • При вычитании суммы из числа можно сначала вычесть из этого числа слагаемое, а затем из полученного результата отнять второе слагаемое: a — (b + c) = a — b — c. Аналогично можно поступить и для вычитания числа из суммы: (a + b) — c = (a — c) + b = a + (b — c).
  • Чтобы сложить разность и число, можно прибавить уменьшаемое, а уже и из рассчитанной суммы вычесть вычитаемое: а + (b — c) = a + b — c.
  • Кроме этого, действие характеризуется антикоммутативностью — правило позволяет поменять аргументы местами, но при этом перед действием необходимо поставить знак минус, и дистрибутивностью — сочетанием умножения и вычитания. Других правил не бывает.

    Если рассмотреть процесс на графике, то можно говорить, что происходит перенос числа по числовой прямой в левую часть. Следует отметить, что если действие выполняется с отрицательным числом, то получится операция сложения, так как минус на минус будет давать плюс. В этом случае результат сместится в правую часть. Важным является и то, что при вычитании переместительный закон, как для сложения или умножения, выполняться не будет. Действительно, очевидно, что 4 — 2 не будет равняться 2 — 4.

    Этим базисным понятиям арифметики начинают обучать в 5 классе. Правила и свойства сложения и вычитания помогают довольно сильно облегчить ту или иную задачу. Так, чтобы вычесть сумму чисел из натурального аргумента, можно сначала найти сумму, а потом выполнить вычитание. Но, используя правило, может быть и удобнее сначала выполнить уменьшение, а потом разность прибавить к числу. Например, 38 — (28 + 7). Здесь проще сначала от тридцати восьми отнять двадцать восемь, а потом прибавить семь, чем сначала выполнять действие в скобках.

    Простые примеры

    Свойства вычитания - правила и примеры для 5 класса

    Знание правил должно быть обязательно подкреплено практическим навыком. Поэтому как в школе, так и в видеоуроках после прослушивания лекции учащимся предлагается решить несколько примеров. Вначале школьники делают вычисления совместно с преподавателем, который должен рассказать, как лучше поступить в том или ином задании. Затем уже ученикам нужно попробовать самостоятельно порешать примеры. Для этого используют математические тренажеры.

    Вот один из них, состоящий из 15 тестов и затрагивающий различные правила:

    • 2 — 1 = 1;
    • 35 — 5 = 30;
    • 100 — 41 = 59;
    • 700 — 545 = 155;
    • 1 + 1 — 2 = 0 = 2 — 2 = 0;
    • 345 — 0 = 345;
    • 0 — 15 = -15;
    • 12275 — 12275 = 0;
    • 32 + 0 — 1 = 32 — 1 = 31;
    • 139 — (10 + 39) = 139 — 39 + 10 = 100 + 10 = 110;
    • (123 + 17) — 33 = (123 — 33) + 17 = 90 +17 = 107;
    • (201 — 11 + 1379) — 1379 = (201 — 11) + (1379 — 1379) = 190 + 0 = 190;
    • 545 — (402 — 35) = 545 + 402 — 35 = 545 — 35 — 402 = 510 — 402 = 108;
    • 32 — 76 + 96 — 76 — 32 = (32 — 32) — (76 — 76) + 96 = 96;
    • 3 — 6 — 50 + 2 + 1 = (3 + 2 + 1) — 6 — 50 = 6 — 6 — 50 = 0 — 50 = -50.

    Только с опытом можно понять, в каких случаях желательно использовать переместительное правило, а в каких удобнее применить сочетательный закон без изменения записи.

    Свойства вычитания - правила и примеры для 5 класса

    Пример. Пусть у Ирины Петровны на кредитной карте находилось 3282 рубля. В конце месяца ей на эту карту начислили 6018 рублей пенсии. Ирина Петровна в магазине купила себе пирог и рассчиталась картой. Стоимость покупки составила 318 рублей. Спрашивается, сколько денег осталось у пенсионерки на счету. Эту задачу можно решить тремя разными способами. Какой из них удобнее, зависит от личного предпочтения:

    • (3282 + 6018) — 318 = 9300 — 318 = 8982.
    • 3282 — 318 + 6018 = 2964 + 6018 = 8982.
    • 6018 — 318 + 3282 = 5700 + 3282 = 8982.

    Таким образом, какой бы способ ни был выбран, можно утверждать, что у Ирины Петровны на карте после покупки останется 8982 рубля. После окончания 5 класса законы вычитания нужно знать так же хорошо, как и таблицу умножения. Только в этом случае от арифметики можно будет переходить к изучению алгебры.

    Вычитание на числовой прямой

    Довольно наглядно свойства вычитания можно увидеть на иллюстрации, изобразив действие на числовой прямой. На ней нужно отложить точки через равный промежуток, например от ноля до десяти, и последовательно их пронумеровать.

    Так, для решения примера 3 + 5 — 2 на прямой необходимо найти цифру три. Согласно условию и свойствам уменьшения, из неё можно вычесть двойку. Следовательно, нужно влево от тройки отсчитать два пункта. На иллюстрации этому будет соответствовать точка один. Затем по условию задания нужно прибавить пять единиц. На графике этому будет соответствовать перемещение на пять точек вправо. Итогом всех действий получится точка, подписанная как шесть.

    Аналогичным образом можно подсчитать любое вычитание или сложение. Но этот метод хорош для обучения при значениях не больше десяти. Очень наглядно иллюстрация показывает и вычитание ноля. Так как при уменьшении на ноль передвигаться по прямой не нужно, то после вычитания значение уменьшаемого не изменяется.

    Свойства вычитания - правила и примеры для 5 класса

    Задача 1. Пусть имеется отрезок АБ. Нужно определить его длину, если известно, что первой точке (А) соответствует число минус пять, а второй (Б) — девять. На прямой нужно отложить ноль и по обе стороны от него отметить точку, соответствующую минус пяти и девяти. Согласно условию, задачу можно записать как -5 + АБ = 9.

    Свойства вычитания - правила и примеры для 5 класса

    Отсюда следует, что АБ = 9 — (- 5). Сформулировав в уме правило, что минус на минус даёт плюс, равенство верно будет переписать как АБ = 9 + 5 = 14. Проверку можно выполнить, уменьшив результат на пять: АБ — 5 = 9. А можно на графике отсчитать в правую сторону четырнадцать отрезков. Последний из них должен будет совпадать с числом -5.

    Задача 2. Велосипедист за день преодолел путь от села Крюково до деревни Морозко. Вычислить, какое он преодолел расстояние за первый час, если за следующее время он проехал 13 км. Для иллюстрации условия задачи нужно на прямой изобразить точку отсчёта, обозначив её за ноль. Затем отметить конечную точку, соответствующую 18 км (в удобном масштабе).

    На прямой от конечной точки отсчитать 13. Теперь от тринадцати подсчитать количество отрезков до начальной точки. Математические же вычисления будут выглядеть так: 18 — 13 = 4 км. И в первом, и во втором случае ответ будет аналогичным.

    Предыдущая
    МатематикаУмножение смешанных дробей - правило и примеры решения
    Следующая
    МатематикаПроизводная арккосинуса - формулы, правила и примеры вычисления
    Помогли? Поставьте оценку, пожалуйста.
    Плохо
    0
    Хорошо
    0
    Супер
    0
    Добавить комментарий

    три × 3 =

    Мы в ВК, подпишись на нас!

    Подпишись на нашу группу в ВКонтакте, чтобы быть в курсе выхода нового материала...

    Вступить