Пропорция

Продолжаем изучать соотношения. В данном уроке мы познакомимся с пропорцией.

Что такое пропорция?

Пропорцией называют равенство двух отношений. Например, отношение Пропорция равно отношению Пропорция

Пропорция

Данная пропорция читается следующим образом:

Десять так относится к пяти, как два относится к одному

Предположим, что в классе 10 девочек и 5 мальчиков

Пропорция

Запишем отношение десяти девочек к пяти мальчикам:

10 : 5

Преобразуем данное отношение в дробь

Пропорция

Выполнив деление в этой дроби, мы получим 2. То есть десять девочек так будут относиться к пяти мальчикам, что на одного мальчика будет приходиться две девочки

Пропорция

Теперь рассмотрим другой класс в котором две девочки и один мальчик

Пропорция

Запишем отношение двух девочек к одному мальчику:

2 : 1

Преобразуем данное отношение в дробь:

Пропорция

Выполнив деление в этой дроби, мы снова получим 2. То есть две девочки так будут относиться к одному мальчику, что на этого одного мальчика будут приходиться две девочки:

Пропорция

Можно сделать вывод, что отношение Пропорция пропорционально отношению Пропорция. Поэтому оно и читалось как «десять так относится к пяти, как два относится к одному».

В нашем примере десять девочек так относятся к пяти мальчикам, как и две девочки относятся к одному мальчику.

Пример 2. Рассмотрим отношение 12 девочек к 3 мальчикам

Пропорция

а также отношение 12 девочек к 2 мальчикам

Пропорция

Данные отношения не являются пропорциональными. Другими словами, мы не можем записать, что Пропорция, поскольку первое отношение, как видно на рисунке показывает, что на одного мальчика приходятся четыре девочки, а второе отношение показывает, что на одного мальчика приходятся шесть девочек.

Поэтому отношение Пропорция не пропорционально отношению Пропорция.

Пропорция

Из рассмотренных примеров видно, что пропорция составляется из дробей. Первая рассмотренная нами пропорция Пропорция состоит из двух дробей. Если выполнить деление в этих дробях, то получим, что 2=2. Понятно, что 2 равно 2.

Вторая рассмотренная нами пропорция была Пропорция. Мы пришли к выводу, что она составлена неправильно, поэтому поставили между дробями Пропорция и Пропорция знак не равно (≠). Если выполнить деление в этих дробях, получим числа 4 и 6. Понятно, что 4 не равно 6.

Рассмотрим пропорцию Пропорция. Данная пропорция составлена правильно, поскольку отношения  Пропорция  и  Пропорция  равны между собой:

Пропорция

Можно проверить это, выполнив деление в этих дробях, то есть разделить 4 на 2, а 8 на 4. В результате с двух сторон получатся двойки. А 2 равно 2

Нужна помощь в подготовке к ЕГЭ по математике? Наши профессиональные репетиторы помогут вам сдать ЕГЭ на 80+ баллов!

Пропорция

2 = 2

Все числа, находящиеся в пропорции (числители и знаменатели обеих дробей) называются членами пропорции. Эти члены подразделяются на два вида: крайние члены и средние члены.

В нашей пропорции  Пропорция  крайние члены это 4 и 4, а средние члены это 2 и 8

Пропорция

Почему крайние члены называют крайними, а средние средними? Если записать пропорцию не в дробном, а в обычном виде, то сразу станет всё понятно:

4 : 2 = 8 : 4

Числа 4 и 4 располагаются с краю, поэтому их назвали крайними, а числа 2 и 8 располагаются посередине, поэтому их назвали средними:

Пропорция

С помощью переменных пропорцию можно записать так:

Пропорция

Данное выражение можно прочесть следующим образом:

a так относится к b, как c относится к d

Смысл данного предложения уже понятен. Речь идет о членах, участвующих в соотношении. a и d — это крайние члены пропорции, b и c — средние члены пропорции.

Основное свойство пропорции

Основное свойство пропорции выглядит следующим образом:

Произведение крайних членов пропорции равно произведению её средних членов.

Мы знаем, что произведение это ни что иное, как обычное умножение. Чтобы проверить правильно ли составлена пропорция, нужно перемножить её крайние и средние члены. Если произведение крайних членов будет равно произведению средних членов, то такая пропорция составлена правильно.

Например, проверим правильно ли составлена пропорция Пропорция . Для этого перемножим её крайние и средние члены. Легко заметить, что крайние и средние члены пропорции располагаются «крест-накрест», поэтому в умножении нет ничего сложного. Перемножаем члены пропорции «крест-накрест»:

Пропорция

4 × 4 = 16 — произведение крайних членов пропорции равно 16.

2 × 8 = 16 — произведение средних членов пропорции так же равно 16.

4 × 4 = 2 × 8

16 = 16

4 × 4 = 2 × 8 — произведение крайних членов равно произведению средних членов. Значит пропорция Пропорция составлена правильно.

Пример 2. Проверить правильно ли составлена пропорция Пропорция

Проверим равно ли произведение крайних членов пропорции произведению её средних членов. Перемножим члены пропорции крест-накрест:

Пропорция

2 × 6 = 12 — произведение крайних членов пропорции равно 12

3 × 1 = 3 — произведение средних членов пропорции равно 3

2 × 6 ≠ 3 × 1

12 ≠ 3

2 × 6 ≠ 3 × 1 — произведение крайних членов пропорции НЕ равно произведению её средних членов. Значит пропорция Пропорция составлена неправильно.

Поэтому в пропорции Пропорция разумнее заменить знак равенства (=) на знак не равно (≠)

Пропорция

Предыдущая

Следующая
Математика с нуляРасстояние, скорость, время
Помогли? Поставьте оценку, пожалуйста.
Плохо
0
Хорошо
0
Супер
0
Мы в ВК, подпишись на нас!

Подпишись на нашу группу в ВКонтакте, чтобы быть в курсе выхода нового материала...

Вступить