Элементы алгебры логики (8 класс, информатика)

Одним из направлений теоретической информатики является алгебра логики. Основы алгебры логики изучаются в школьном курсе информатики в 8 классе. Кратко об элементах алгебры логики можно прочитать в данной статье.

Элементы алгебры логики (8 класс, информатика)

Элементы алгебры логики

Одним из разделов теоретической информатики является алгебра логики. Некоторые элементы алгебры логики доступны для понимания уже на школьном уровне.

Первые элементы алгебры логики были описаны в 19 веке в работах английского математика Джорджа Буля. Он первый высказал мысль о связи логики с математикой.

Высказывания

Объектом изучения алгебры логики являются высказывания, которые представляют собой повествовательные предложения, которые могут быть однозначно оценены как истинные или ложные. Истинность высказывания обозначают единицей, ложность – нулем. Примером высказывания может быть предложение «Москва столица Российской федерации».

Высказывания принято обозначать латинскими буквами.

Не все предложения, несущие ту или иную информацию можно назвать высказываниями. Например, вопросительные или побудительные предложения – это не высказывания. Также не являются высказываниями математические выражения с переменными.

Например, не являются высказываниями следующие предложения:

  • Сколько весит слон?
  • Летайте самолетами Аэрофлота!
  • 5*х + 8*y = 24
  • Этот фильм самый лучший.

Алгебра логики изучает методы работы с высказываниями.

Действия над высказываниями

Высказывания как объекты могут быть операндами следующих логических действий

  • Пересечение.
  • Объединение.
  • Инверсия.

Наглядно логические операции поясняют круги Эйлера или диаграммы Венна.

Пересечение

Пересечение – это действие над высказываниями, в результате которого будет получено новое высказывание истинное только в том случае, когда и исходные высказывания одновременно истинны.

Например, для высказываний «На каникулах я поеду в Волгоград» и «Выходные я проведу у бабушки» результатом операции пересечения будет новое высказывание «На каникулах я поеду в Волгоград и выходные я проведу у бабушки», которое является истиной только в том случае, когда истины оба исходных утверждения одновременно

Пересечение также называют логическим умножением, конъюнкцией или логическим И.

Обозначают знаками И, & или ∩.

Элементы алгебры логики (8 класс, информатика)

Рис. 1. Диаграмма Венна для операции пересечения

На диаграмме операция пересечения выглядит как закрашенная область – представляющая собой общую для каждого операнда часть.

Объединение

Объединение – представляет собой действие над двумя высказываниями, в результате которого будет получено новое высказывание, ложное в том случае, когда одно из двух исходных операндов ложно.

Например, для исходных высказываний «На каникулах я поеду в Волгоград» и «На каникулах я поеду в Питер» результатом операции объединения будет высказывание «На каникулах я поеду в Волгоград или на каникулах я поеду в Питер», которое ложно только в том случае, когда ложны оба исходных высказывания. Если хотя бы одно из первоначальных высказываний является правдой, то и результат будет иметь значение «Истина».

Объединение также называют логическим сложением, дизъюнкцией, логическим ИЛИ.

Для ее обозначения используются знаки: ИЛИ, +, U.

Элементы алгебры логики (8 класс, информатика)

Рис. 2. Диаграмма Венна для операции объединения

На диаграмме Венна операция объединения представляет собой всю область, относящуюся и к первому и ко второму операнду.

Инверсия

Инверсия – унарная логическая операция, заключающаяся в изменении на противоположное значение.

Например, высказывание «На каникулах я поеду в Волгоград» в инверсной форме будет выглядеть так «На каникулах я не поеду в Волгоград».

Инверсию обозначают знаками НЕ, ¬, ¯.

Инверсия на диаграмме Венна выглядит как область, не относящаяся к операнду.

Элементы алгебры логики (8 класс, информатика)

Рис. 3. Диаграмма Венна для операции инвертирования

Аксиомы алгебры логики

В математике есть понятие аксиома – постулат, не требующий доказательств.

В математической логике также есть бездоказательные утверждения, касающиеся логических операций над высказываниями.

Для объединения справедливы аксиомы:

  • А + 0 = А
  • А + 1 = 1
  • А + А = А
  • А + НЕ(А) = 1

Для пересечения характерны такие аксиомы:

  • А & 0 = 0
  • А & 1 = А
  • А & А = А
  • А & НЕ(А) = О

Для операции инверсии применима аксиома двойного отрицания НЕ (НЕ (А)), когда дважды проинвертировав операнд получают в итоге само исходное значение.

Что мы узнали?

Алгебра логики стоит на стыке математики и информатики и составляет теоретическую базу, на основе которой строятся методы работы с информацией. Объектом изучения этого направления является высказывания. Основными логическими операциями являются пересечение, объединение и инверсия. В алгебре логики действуют ряд аксиом.

Предыдущая
ИнформатикаДвоичная арифметика – примеры чисел
Следующая
ИнформатикаЛогические элементы – определение, свойства
Помогли? Поставьте оценку, пожалуйста.
Плохо
1
Хорошо
0
Супер
0
Спринт-Олимпик.ру