Непозиционная система счисления – примеры

Набор символов для обозначения чисел и правила их использования составляют систему счисления. Системы счисления принято делить на позиционные и непозиционные. Описание и примеры непозиционных систем счисления приведены в данной статье.

Непозиционная система счисления – примеры

Что такое непозиционная система счисления

В непозиционной системе счисления изменение положения символа в числе не влияет на значение самого числа.

Отличие позиционных и непозиционных систем хорошо видно при сравнении арабских и римских чисел. Числа, записанные арабскими цифрами, составляются в позиционной системе. И здесь важно учитывать понятие разрядности. Одна и та же цифра, в зависимости от того, в каком разряде числа она записывается, обозначает разную числовую величину. Например, в числе 234 цифра 2 обозначает величину двести, а в числе 324 – соответствует двадцати.

В римской системе счисления, цифра, в какое положение ее не помещай, всегда означает одно и то же. Например, с помощью римских цифр V и I, эквивалентных арабским 5 и 1, можно составить числа VI и IV, что соответствует 6 и 4. В непозиционной системе расположение цифры никак не влияет на ее значение.

История возникновения непозиционных систем счисления уходит корнями в глубокую древность. Жители древних государств: Вавилона, Майя, Древнего Египта, Греции и Рима, пользовались непозиционным принципом в составлении чисел. Некоторые из таких систем, например, римские цифры, используются и по сей день.

Римская система счисления

В римской системе ключевые числа записываются латинскими буквами I, V, X, L, C, D, M, а все остальные числовые значения получаются путем комбинирования этих знаков с использованием принципов сложения и вычитания.

Непозиционная система счисления – примеры

Рис. 1. Римские цифры и их десятичные арабские эквиваленты.

Римская система получила название от места своего возникновения. Она начала использоваться еще в Древнем Риме, более двух тысяч лет назад. В римской системе есть одна особенность – в ней не используется цифра ноль.

Числа в римской системе следует записывать слева направо от большего к меньшему. Если в числе перед большей цифрой стоит меньшая, то ее следует вычесть из следующей за ней цифрой, исходя из принципа вычитания. Меньшие цифры, стоящие после больших, соответственно прибавляются.

Например, арабское число 1978 в римской системе будет записано так: MCMLXXVIII.

Римская система, в настоящее время используется для записи дат, обозначения валентности химических элементов.

Древние непозиционные системы счисления

Исторической науке известны древние системы счисления, использующие различные знаки, символы и рисунки для обозначения числовых значений. Самыми известными являются:

  • Древнеегипетская система счисления
  • Вавилонская система счисления
  • Система счисления майя

Древнеегипетская система счисления

В древнеегипетской системе счисления специальные символы заменяли числа 1, 10, 100, 1000, 1000, и так далее, кратные десяти.

Непозиционная система счисления – примеры

Рис. 2. Символы древнеегипетской системы счисления и их десятичные эквиваленты.

Числа записывались в виде комбинации таких символов, повторяющихся в зависимости от значения конкретного разряда не более девяти раз. Например, в числе 45 символ для обозначения 10 записывается четыре раза, а символ единицы, повторяется пять раз.

Вавилонская система счисления

Вавилонская система представления чисел использует для обозначения чисел знаки в виде вертикальных и горизонтальных насечек – клиньев. Такую систему написания знаков называют клинописью.

Единицы в древнем Вавилоне обозначали прямыми клиньями, десятки – лежащими, то есть горизонтальными. Прямым клином обозначается также число шестьдесят.

Вавилонскую систему записи числовых значений называют также шестидесятеричной. Принцип разделения числового пространства на группы по 60 единиц используется и в настоящее время для определения временных отрезков. Один час состоит из 60 минут, одна минута – из 60 секунд.

Вавилонская система представляет собой комбинированный вариант системы счисления, так как представление чисел от 1 до 60 подчинено непозиционному принципу, а числа свыше шестидесяти представляются с использованием позиционного подхода.

Например, число 34 в вавилонской системе записывается как последовательность из трех горизонтальных клиньев, за которыми следует четыре прямых клина. А число 84 будет начинаться с прямого клина, обозначающего 60, за которым следуют два лежащих клина и затем четыре прямых.

Система счисления майя

Для обозначения чисел в различных бытовых ситуациях Майя использовали непозиционную систему представления чисел, в которой записывались числа от 0 до 19 с помощью знаков, представляющих собой комбинации точек и горизонтально расположенных отрезков.

Непозиционная система счисления – примеры

Рис. 3. Цифры народа цивилизации майя.

Например, цифра для обозначения числа 17 выглядит как две точки, расположенные над тремя горизонтальными черточками.

Что мы узнали?

Для представления чисел используются позиционные и непозиционные системы счисления. В непозиционных системах расположение знаков, составляющих числа не влияет на их числовые значения. Самой известной непозиционной системой является система римских цифр. Известные исторической науке системы записи чисел древних народов Египта, Вавилона, цивилизации Майя применяли непозиционный принцип представления чисел, используя различные знаки для обозначения числовых эквивалентов.

Предыдущая
ИнформатикаДесятичная система счисления – основание, перевод, деление в таблице
Следующая
ИнформатикаШестнадцатиричная система счисления – умножение, вычитание в таблице
Помогли? Поставьте оценку, пожалуйста.
Плохо
0
Хорошо
0
Супер
0
Добавить комментарий

пятнадцать − 2 =

Мы в ВК, подпишись на нас!

Подпишись на нашу группу в ВКонтакте, чтобы быть в курсе выхода нового материала...

Вступить