Теоремы Чевы и Менелая – одни из базовых основ планиметрии и геометрии, которым репетиторы и школьные учителя уделяют особое внимание, а ученикам задают писать научные доклады и рефераты на эту тему в качестве домашнего задания.
Их изучение рекомендуется не только в том случае, если вы – математик, но и в помощь ученикам старшего уровня (по уровню сложности может подойти и любой средний класс) и студентам профильных специальностей, которые всерьёз интересуются данной наукой.
Именно для этого мы подготовили данный материал. В нем вы узнаете, чем интересны данные основы, принципы их доказательств и рассмотрите решения некоторых задач из ЕГЭ.
Формулировка теоремы Менелая
Менелай Александрийский — древнегреческий математик и астроном, живший в I в. Большой вклад внес в развитие сферической тригонометрии, где для получения формул использовал именно эту теорему, которую теперь изучают все школьники.
Прежде чем приступить к проработке, сделаем соответствующий рисунок.
Что мы имеем? Треугольник ABC и прямую, которая пересекает две его стороны и продолжение третьей стороны.
Особенность теоремы заключается и в том, что приведённый рисунок чаще всего встречается в заданиях формата ЕГЭ. Это – весьма распространённая геометрическая конструкция, когда какая-то прямая таким образом пересекает треугольник.
Если мы видим приведённый выше рисунок, можно записать формулу:
Запомнить отношение просто: действуем по принципу «вершина — точка, точка — вершина». То есть, если на стороне AB нам дана некоторая точка C1, их отношенное записывается следующим образом:
Доказательство теоремы
Для доказательства теоремы Менелая проведём через точку C прямую, параллельную AB, таким образом:
Обозначим точку пересечения данной прямой с B1C1
через точку D.
В таком случае мы получим несколько пар подобных треугольников.
Сторона CD параллельна AB. Тогда первой парой подобных треугольников будут треугольники B1CD и B1AC1. Они подобны по второму признаку подобия треугольников, то есть по двум пропорциональным сторонам и углу B1 между ними.
Углы B1CD и B1AC1 равны как соответственные при параллельных прямых CD, AB и секущей AC.
Анализируя данную пару подобных треугольников, можно записать условие пропорциональности сходственных сторон, а именно:
Так как сторона CD не является составляющей исходного равенства, для дальнейшего доказательства её нужно выразить.
Используя описанное равенства, применив свойства пропорции, запишем:
Запишем следующую пару подобных треугольников: треугольники CDA1 и BC1A1 подобны, так как углы CA1D и BA1C1 равны как вертикальные. Кроме этого, угол CDA1 равен углу BC1A1, как накрест лежащие при параллельных прямых CD, AB и секущей C1D.
Покажем это на рисунке:
Из данного подобия можно записать некоторую пропорциональность сходственных сторон:
Так же выразим CD:
Осталось лишь приравнять. Дроби, с помощью которых мы выразили CD – равны.
Таким образом получаем:
Умножив обе дроби на часть, обратную левой дроби, мы получили исходное равенство:
Что и требовалось доказать.
Формулировка теоремы Чевы
Джованни Чева — итальянский математик, инженер. Годы жизни 1648 — 1734 гг. Основные труды ученого в области геометрии и механики.
Рассматриваемая теорема была доказана ученым в 1678 г.
Рассмотрим приведённый ниже рисунок:
Теорема звучит так: любые произвольные отрезки, выходящие из вершин треугольника, (но с одним условием: они должны пересекаться в одной точке) делят противолежащие этим вершинам стороны таким образом, что истинно равенство:
В честь ученого, доказавшего эту теорему, данные отрезки называют «чевианами».
Доказательство теоремы
Рассмотрим рисунок:
Итак, мы имеем треугольник ABC и произвольные чевианы AA1 и BB1.
Третья чевиана CC1 обязательно должна проходить через точку пересечения первых двух. При этом получается, что:
Обозначим за O точку пересечения данных прямых.
Продлим медиану BB1.
Проведём перпендикуляры из вершин A и С таким образом:
Запишем соотношение:
Треугольники AKB1 и CNB1
подобны по острому углу.
Аналогично получаем:
Теперь перемножим равенства:
что и требовалось доказать.
Применение теорем Чевы и Менелая при решении задач ЕГЭ
Теорема Менелая (как и обратная) применима и в первой части экзаменационного бланка, и в 16-м задании. Рассмотрим пару таких задач.
Задача 1
Дан треугольник ABC (см. рисунок ниже) с продолжением стороны CA. Также проведены медианы BM и AN. Точку их пересечения обозначим за O.
Возьмём точку K на стороне AB, такую, что AK относится к AB, как 1/3.
AC = 4 см, AM = 2 см.
Проведём прямую OK до пересечения со стороной AC. Точку их пересечения обозначим за P.
Сторону AP обозначим за y.
Найти: чему равен отрезок AP.
Решение:
Так как отношение сторон AB и AK равно 1/3, следовательно, AK = x, а KB = 3x.
Рассмотрим треугольник ABM. Для него берём прямую OP.
Таким образом мы нашли искомые точки P, A, M, O, K и B.
Запишем теорему Менелая к данному рисунку.
Подставляем в это соотношение известные данные:
В итоге мы получаем, что y = 4.
Ответ: отрезок AP = 4 см.
Задача 2
Задача, связанная со свойствами теоремы Чевы.
Рассмотрим рисунок:
Дано:
сумма AB и BC равна 13;
AC = 8 см.
Найти: отношение BO и OB1.
Итак, запишем отношение:
Подставляем:
Конечным результатом является дробь 13/8.
Ответ: