Сложение и вычитание векторов – правила

Сложение и вычитание векторов – это одно из немногих действий на стыке математики и геометрии. Дело в том, что выражения из векторов можно складывать и вычитать арифметически, ориентируясь только по буквенным обозначениям отрезков, но для того, чтобы получить числовой результат или его геометрическое отображение придется выполнить ряд построений. Разберемся подробнее в правилах сложения и вычитания векторов.

Сложение и вычитание векторов – правила

Что такое вектор?

Вектор это образок с направлением.

Вектор и луч часто путают и допускают грубую ошибку. Вектор то направленный отрезок, а любой отрезок имеет величину, то есть его можно измерить линейкой. Луч имеет начало и направление, но он бесконечен, то есть измерить его невозможно. Так же, как нельзя и складывать лучи между собой или луч с вектором.

Вектор иногда помещают в декартову систему координат. Тогда проведя перпендикуляры к каждой из осей, можно получить проекции вектора на оси х и у. Каждая из этих проекций будет отрезком. При этом, если из проекций составить прямоугольник, то его гипотенуза и будет начальным вектором. Это иногда используется при сложении векторов.

Сложение и вычитание векторов – правила

Рис. 1. Вектор в системе координат.

Сложение и вычитание векторов

Способов и методов сложения векторов всего два. Существует и третий, но его не считают отдельным методом, так как он проистекает из первых двух. Но мы его рассмотрим отдельно, чтобы не возникало вопросов при дальнейшем изучении темы.

Правило многоугольника

Для того, чтобы сложить вектора правилом многоугольника, необходимо параллельным переносом совместить конец первого вектора с началом второго, конец второго с началом третьего и так далее, пока не кончатся вектора, которые необходимо складывать.

После этого нужно конец последнего вектора соединить с началом первого и указать направление. Получившийся вектор будет направлен в сторону последнего из учавствовавших в сложении.

Складывать таким способом можно любое количество векторов. Если так складывается только два вектора, то способ называют правилом треугольника

Нужно понять и запомнить, что у отрезка одна определяющая величина: размер. У вектора определяющих величин две: размер и направление. Поэтому нельзя менять направление вектора и его размер. Любые действия нужно осуществлять с помощью параллельного переноса, то есть без изменения направления.

Сложение и вычитание векторов – правила

Рис. 2. Правило многоугольника.

Правило параллелограмма

Правило параллелограмма сложнее, его можно применять только для 2 векторов. Если вам нужно этим способом сложить большее количество векторов, например, три, то действие выполняют в следующем порядке:

  • Складывают два любых вектора правилом параллелограмма. Результатом будет некий вектор и у нас остается еще один, который в сложении не участвовал.
  • Получившийся и оставшийся вектора складывают по тому же правилу.
  • Этот процесс можно повторять столько раз, сколько требуется по условию задачи.

Само правило параллелограмма заключается в том, что начала двух векторов совмещаются. После этого получившуюся фигуру достраивают до параллелограмма. Диагональ, которая выходит из начала двух векторов и есть результат сложения. Вектор должен быть направлен в противоположную сторону от совмещенного начала двух векторов.

Для того чтобы вычесть вектора любым способом, направление вектора, который является вычитаемым, меняют на противоположное. Получившиеся вектора складывают любым из методов.

Сложение и вычитание векторов – правила

Рис. 3. Правило прямоугольника.

Сложение в декартовой системе

В декартовой системе все вектора раскладывают на проекции, после чего отрезки проекций складывают: проекции на ось х отдельно, на ось у отдельно. После из получившихся двух проекций снова собирают вектор.

Что мы узнали?

Мы узнали, что такое вектор. Поговорили о правилах сложении и вычитании векторов. Обсудили, чем отличается вектор от луча и обсудили метод действий с векторами в декартовой системе координат.

Предыдущая
ГеометрияЦентральный угол – определение, измерение
Следующая
ГеометрияДиагональ прямоугольного параллелепипеда – формула с квадратом
Помогли? Поставьте оценку, пожалуйста.
Плохо
0
Хорошо
0
Супер
0
Оценить
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд
Загрузка...
Добавить комментарий