Площади подобных треугольников – определение, формула

Подобные треугольник – это следующий шаг в изучении треугольников после равенства. Нужно в полной мере понимать возможности подобия треугольников, чтобы правильно использовать все свойства в решении задач. Разберемся в отличиях равенства, подобия и равновеличия, а также поговорим о свойствах сторон и определении площадей подобных треугольников.

Площади подобных треугольников – определение, формула

Подобные треугольники

Подобными треугольниками называют треугольники, соответственные стороны которых пропорциональны, а углы равны. Равные треугольники также являются пропорциональными с коэффициентом пропорциональности равным 1.

Площади подобных треугольников – определение, формула

Рис. 1. Подобные треугольники

Коэффициент пропорциональности – это отношение сторон одного треугольника к соответствующим сторонам другого треугольника. Важно при подсчете коэффициента строго соблюдать какая сторона к какой относится.

Например, если вы начали расчет делением сторон большего треугольника на стороны меньшего, то стоит придерживаться такого подхода и далее.

Признаки подобия

Признаки подобия в чем-то похожи на признаки равенства треугольников. Всего их тр:

  • По двум углам. Если два угла одного треугольника равны соответствующим углам другого треугольника, то такие треугольники подобны.
  • По трем сторонам. Если три стороны одного треугольника пропорциональны соответствующим сторонам другого треугольника, то такие треугольники подобны.
  • По двум сторонам и углу между ними. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то такие треугольники подобны.

Площади подобных треугольников – определение, формула

Рис. 2. Признаки подобия треугольников

Свойства подобных треугольников

  • Стороны подобных треугольников пропорциональны и относятся друг к другу в отношении, равном коэффициенту подобия.
  • Углы подобных треугольников равны.
  • Площади подобных треугольников относятся друг к другу в отношении, равном квадрату коэффициента подобия.

Остановимся подробнее на последнем свойстве. Почему все стороны соотносятся ,как коэффициент в первой степени, а площади в квадрате? Потому что площадь это половина произведения основания на высоту.

Пропорциональны друг другу не только стороны, но и характерные отрезки: медианы, высоты, биссектрисы.

Получается, что обе части произведения площади пропорциональны, но в произведении участвуют как высота, так и основание. Значит коэффициент пропорциональности должен быть возведен в квадрат.

$$S_1={1over{2}}*h_1*a_1$$

$$S_2={1over{2}}*h_2*a_2$$

$${S_1over{S_2}}={{h_1*a_1}over{h_2*a_2}}$$

$${S_1over{S_2}}={h_1over{h_2}} *{a_1over{a_2}}$$

$${S_1over{S_2}}=k *k$$

$${S_1over{S_2}}=k ^2$$

Нужно четко различать понятие подобных и равновеликих треугольников. Подобные треугольники имеют коэффициент подобия, в соответствие с которым соотносятся стороны треугольника. А равновеликие треугольники могут, как угодно разнится по значениям сторон, важно лишь, чтобы площади треугольников были равны.

Площади подобных треугольников – определение, формула

Рис. 3. Равновеликие треугольники

Что мы узнали?

Мы узнали, что такое подобные треугольники, поговорили об их свойствах. Поговорили об отношении площадей подобных треугольников и вывели это отношение на практике для лучшего запоминания формулы.

Предыдущая
ГеометрияОтношение площадей подобных треугольников – определение
Следующая
ГеометрияЦентральный угол – определение, измерение
Помогли? Поставьте оценку, пожалуйста.
Плохо
0
Хорошо
0
Супер
0
Оценить
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд
Загрузка...
Добавить комментарий