Точка пересечения медиан треугольника – нахождение, примеры

Медиана – это один из уникальных отрезков треугольника. Медиана имеет ряд свойств полезных для решения задач, а точка пересечения медиан еще больше расширяет список этих свойств. О точке пересечения медиан и ее свойствах и пойдет речь сегодня.

Точка пересечения медиан треугольника – нахождение, примеры

Медиана

Медиана – это отрезок, соединяющий вершину треугольника с серединой отрезка противоположной стороны. Три медианы треугольника пересекаются в одной точке, которая зовется точкой пересечения медиан.

Медианы, в отличие от высот, всегда лежат внутри треугольника. Это логично, ведь отрезок медианы соединяет вершину и середину стороны. А середина стороны всегда лежит внутри треугольника.

Точка пересечения медиан треугольника – нахождение, примеры

Рис. 1. Медианы в тупоугольном треугольнике.

Если соединить два любых основания медиан отрезком, то получится средняя линия треугольника. Три средние линии треугольника образуют треугольник, подобный изначальному с коэффициентом подобия 1:2

Есть еще одно любопытное свойство медиан, которое позволит не запутаться при построении золотого сечения треугольника. Медиана в треугольнике всегда располагается между высотой и биссектрисой.

Точка пересечения медиан треугольника – нахождение, примеры

Рис. 2. Золотое сечение произвольного треугольника.

Приведем так же формулу вычисления длины медианы по трем сторонам. Эта формула часто используется при решении задач, а потому ее желательно запомнить.

$$m_c={{sqrt{2a^2+2b^2-c^2}}over{2}}$$

Зачастую ученикам проще запомнить словесную формулировку, а не заучивать формулу. Чтобы найти медиану по трем сторонам, нужно взять корень из сумм удвоенных квадратов сторон минус квадрат стороны, к которой проведена медиана. Полученный корень нужно поделить пополам.

Точка пересечения медиан

Точка пересечения медиан является одной из 3 замечательных точек треугольника, которые составляют золотое сечение треугольника.

Точка пересечения медиан треугольника имеет ряд свойств, полезных при решении задач:

  • Медиана точкой пересечения делится на отрезки с коэффициентом пропорциональности 1:2 считая от вершины.
  • Три медианы, проведенные в треугольнике, делят его на 6 равновеликих треугольников. Равновеликими называют треугольники с равной площадью. Сами по себе эти фигуры имеют мало общего, но численная характеристика площади у них совпадает.
  • Точка пересечения медиан в треугольнике называется центроидом и является центром тяжести треугольника.

Точка пересечения медиан единственная из золотого сечения треугольника, имеет реальный физический смысл. Если из картона вырезать треугольник, тонким карандашом провести в нем медианы, то точка их пересечения будет центром тяжести плоской фигуры.

Точка пересечения медиан треугольника – нахождение, примеры

Рис. 3. Центр тяжести треугольника.

Это значит, что если установить иголку в эту точку, то фигура будет держаться на ней без прокола, исключительно за счет равновесия.

Что мы узнали?

Мы привели формулу вычисления медианы по 3 сторонам треугольника. Привели несколько свойств точки пересечения медиан в треугольнике. Поговорили о реальном физическом значение центроида треугольника.

Предыдущая
ГеометрияТочка пересечения высот треугольника – уравнение, примеры
Следующая
ГеометрияСвойства прямоугольника – определение, основные признаки
Помогли? Поставьте оценку, пожалуйста.
Плохо
0
Хорошо
0
Супер
0
Спринт-Олимпик.ру