Средняя линия трапеции – свойства, теоремы и задачи

Трапеция — выпуклый четырёхугольник, основная особенность которого в том, что никакие три из четырех составляющих его точек не лежат на одной прямой. Курс геометрии акцентирует на этом внимание, где понятие средняя линия трапеции применяется для решения задач. Величина этого отрезка вычисляется через тригонометрические значения углов, в формулах используется длина основания, диагонали или площадь.

Средняя линия трапеции - свойства, теоремы и задачи

Серединный отрезок

Трапеция — фигура (четырехугольник), что состоит из четырех сторон, две из которых лежат на параллельных прямых, а остальные нет. Параллельные — верхнее и нижнее основание, 2 другие имеют название боковых сторон. Из этого следует, что четырехугольник состоит из двух оснований.

Средняя линия — отрезок, который соединяет середины боков фигуры и обозначается буквой m. Интересно, что если в треугольнике таких отрезков можно провести 3, то в таком четырёхугольнике исключительно одну.

Свойство и формулы

Серединная линия равняется половине сумм длины двух оснований. Это определение является теоремой, доказательство и для того чтобы его сформулировать, необходимо обратить внимание на свойство срединного отрезка в треугольнике.

Средняя линия трапеции - свойства, теоремы и задачи

Доказать теорему просто. Для этого в трапеции проводят серединный отрезок так, чтобы он опускался с верхней точки фигуры и пересекался с продленным нижним основанием. Такая линия делит четырёхугольник на два треугольника. Причем средняя линия фигуры также принадлежит треугольнику и выполняет те же функции. Она равна половине нижней стороны, которая состоит из двух отрезков, равных основаниям трапеции.

Свойство такого отрезка — в четырехугольнике он параллелен основаниям. Учитывая эти данные, их можно использовать как признак при решениях различных заданий для выявления этого понятия.

Формула для нахождения записывается так:

m = (a + b) / 2, где a, b — обозначение длины оснований.

Тригонометрия углов применима в формуле:

  • m = a — h (ctga +ctg b)/ 2;
  • m = b — h (ctga +ctg b)/ 2.

Средняя линия трапеции - свойства, теоремы и задачи

Полусумма оснований трапеции вычисляется через диагонали и их угол пересечения и высоту. Итак, для этого находится:

  • m = d 1 d 2 /2 h * sina;
  • m = d 1 d 2 /2 h * sinb.

Углы а, b находятся при нижнем основании, а линия h является высотой, проведенной к этому отрезку.

Формула средней линии трапеции через площадь и высоту записывается так:

Нужна помощь в подготовке к ЕГЭ по математике? Наши профессиональные репетиторы помогут вам сдать ЕГЭ на 80+ баллов!

m = S / h.

Кроме этого, такой отрезок делит фигуру на две части и имеет место соотношение их площадей, которое выражается в виде:

S 1 /S 2 =3a+b/a+3b, где основания a<b.

Все эти формулы используются для решения задач и доказывания определённых утверждений.

Примеры заданий

Серединный отрезок трапеции равен 15 дм, а одно из оснований на 6 дм длиннее от другого. Определить длину параллельных сторон в трапеции.

Чтобы найти нужные стороны, нужно припустить, что на одну приходится х дм, соответственно на другую — (х+6) дм. Учитывая свойство серединного отрезка в этой фигуре, следует, что m = a + b /2.

Средняя линия трапеции - свойства, теоремы и задачи

m =2х+6/2=15, от сюда следует, что х=12 дм.

В результате a =12 дм, b =18 дм.

Следующее задание, где требуется искать стороны, что лежат на параллельных прямых. При этом дано их соотношения 4:7 средняя линия равна 55 дм.

Итак, пусть k — коэффициент пропорциональности, основания относятся как 4 k :7 k. Получается уравнение (4k +7k)/2=55. Отсюда следует, что k =10, то есть на нужные отрезки приходится по 40 и 70 дм.

Таким образом, средняя линия треугольника и трапеции имеет одинаковое свойство. Темы между собой очень похожи. Следовательно, средняя линия трапеции равна половине сумм двух оснований.

Предыдущая
ГеометрияКакими могут быть стороны треугольника - свойства и вычисления
Следующая
ГеометрияБиссектриса параллелограмма - свойства, признаки и теоремы
Помогли? Поставьте оценку, пожалуйста.
Плохо
0
Хорошо
0
Супер
0
Мы в ВК, подпишись на нас!

Подпишись на нашу группу в ВКонтакте, чтобы быть в курсе выхода нового материала...

Вступить