Движение тела с постоянным свободного падения – уравнение, формула

Одним из частых видов неравномерного движения является движение тела с постоянным ускорением. Рассмотрим особенности такого движения, выведем его кинематическую формулу.

Движение тела с постоянным свободного падения – уравнение, формула

Ускорение

Самым простым видом движения является равномерное и прямолинейное. Однако, большинство движений являются равномерными и прямолинейными лишь на некотором участке пути. Трение и взаимодействия с другими телами приводят к тому, что большая часть движений происходят с изменением скорости, то есть неравномерно. Покоящееся тело имеет нулевую скорость, потом начинает движение, и его скорость увеличивается, а после равномерного участка происходит замедление и остановка, скорость тела опять изменяется.

При этом, поскольку скорость – это векторная величина, то даже при постоянном модуле она может меняться, изменяя направление.

Изменение скорости может происходить с разной быстротой. Одна и та же скорость может быть достигнута с нулевой за различное время. Для оценки этой быстроты используется специальный параметр – ускорение.

Ускорение равно отношению изменения скорости движения ко времени этого изменения:

$$overrightarrow a = {overrightarrow v_2 – overrightarrow v_1 over t_2-t_1}={overrightarrow{Δv} over Δt}$$

Ускорение – это векторная величина, если движение с ускорением происходит не по прямой, а на плоскости или в пространстве, ее направление и модуль находятся по правилам действий с векторами.

Из формулы ускорения следует, что единицей ускорения является метр в секунду за секунду или метр в секунду в квадрате.

Движение тела с постоянным свободного падения – уравнение, формула

Рис. 1. Ускорение в физике.

Скорость движения при постоянном ускорении

Движение с постоянным ускорением называется равноускоренным, независимо от того, увеличивает ли тело скорость или уменьшает. Хорошим примером равноускоренного движения является свободное падение тел в первые секунды, когда сопротивление воздуха не играет роли. Еще Галилей установил, что все тела при падении увеличивают скорость одинаково, то есть движутся с равным ускорением.

Используя приведенную формулу, можно найти скорость падающего тела (и вообще любого тела, движущегося с постоянным ускорением) в любой момент времени. Если в принятой Системе Отсчета тело в момент времени $t_1=0$ двигалось со скоростью $overrightarrow v_0$, и после этого двигалось с ускорением $overrightarrow a$ его скорость в момент $t$ составит:

$$overrightarrow v = overrightarrow v_0 + overrightarrow at$$

Это основная формула скорости при равноускоренном движении.

Графиком скорости при постоянном ускорении является прямая, пересекающая ординату в точке с координатой $v_0$, и направленная вверх, если ускорение положительно, или вниз, если ускорение отрицательно.

Движение тела с постоянным свободного падения – уравнение, формула

Рис. 2. Пример графика скорости равноускоренного движения.

Перемещение при равноускоренном движении

Из графика скорости можно определить перемещение, учитывая, что величина перемещения равна площади фигуры под графиком.

В общем случае эта фигура представляет собой трапецию, высота которой равна $t$, а основания – $v_0$ и $v=at$. Используя формулу, уже известную в 10 классе из геометрии, получим:

$$x = {v_0+vover 2}t$$

Учитывая векторный характер величин, а также то, что в начальный момент перемещение равно $x_0$, окончательно имеем:

$$overrightarrow x =overrightarrow x_0+overrightarrow v_0t+{overrightarrow at^2over 2}$$

Это основная формула перемещения при равноускоренном движении. Отметим, что она представляет собой уравнение второй степени, то есть график перемещения при равноускоренном движении будет параболой.

Движение тела с постоянным свободного падения – уравнение, формула

Рис. 3. Пример графика перемещения равноускоренного движения.

Обе приведенных формулы связывают скорость и перемещение материальной токи с моментом времени. Но, при решении задач иногда требуется, чтобы формула напрямую связывала скорость и перемещение. Выразив время из формулы скорости, и подставив его в формулу расстояния, получим:

$$x(t)=x_0+{v^2-v_0^2over 2a}$$

Заметим, что данное соотношение имеет скалярный вид. Так происходит из-за присутствия действий умножения и деления, которые не применимы к векторным величинам, поэтому последнюю формулу можно использовать лишь только после проецирования векторов на оси координат.

Что мы узнали?

Ускорение – это величина, характеризующая быстроту изменения скорости движения. Если при движении ускорение не меняется, такое движение называется равноускоренным. График скорости при равноускоренном движении представляет собой наклонную прямую, график перемещения – параболу.

Предыдущая
ФизикаЭлектронно-лучевая трубка – устройство, принцип действия пучков, схема и строение кратко
Следующая
ФизикаТепловой двигатель – принцип действия, примеры, определение и кпд кратко
Помогли? Поставьте оценку, пожалуйста.
Плохо
0
Хорошо
0
Супер
0
Мы в ВК, подпишись на нас!

Подпишись на нашу группу в ВКонтакте, чтобы быть в курсе выхода нового материала...

Вступить