Частота электромагнитных колебаний – формула

Одним из видов колебательных процессов, широко используемых человеком, являются электромагнитные колебания. Как и у любого колебательного процесса, у электромагнитных колебаний имеется ряд характеристик. Рассмотрим такую характеристику, как частота.

Частота электромагнитных колебаний – формула

Электрический колебательный контур

Простейшей электрической системой, в которой могут существовать колебания, является колебательный контур. Он состоит из параллельно соединенных конденсатора и катушки индуктивности:

Частота электромагнитных колебаний – формула

Рис. 1. Колебательный контур.

Механизм возникновения колебаний в контуре основан на переходах энергии между зарядом конденсатора и магнитным полем катушки. При отсутствии потерь на нагревание и излучение эта энергия не уменьшается, и равна:

$$W=const={Li^2over 2}+{q^2over{2C}}$$,

где:

  • $W$ – полная энергия в контуре;
  • $L$ – индуктивность катушки;
  • $i$ – ток, текущий через контур;
  • $q$ – заряд конденсатора;
  • $С$ – электрическая емкость конденсатора.

Если общая энергия постоянна во времени, то производная этой энергии равна нулю, а значит:

$$left(Li^2over 2right)’ = -left(q^2over{2C}right)’$$

Физический смысл этой формулы в том, что скорость изменения энергии магнитного поля в катушке равна скорости изменения энергии заряда в конденсаторе. Знак минус означает, что при возрастании одной из этих энергий – другая убывает.

Вычислив производные, получаем:

$${Lover 2}×2ii’=-{1over 2C}×2qq’$$

Учитывая, что ток – это производная заряда, заменяем ток этой производной, а производную тока заменяем второй производной заряда. После преобразования имеем:

$$q”=-{1over LC}q$$

Данная формула полностью аналогична формуле колебаний пружинного маятника:

$$x”=-{kover m}x$$

Она имеет тоже самое решение – круговую функцию (синус или косинус), а коэффициент в правой части равен квадрату круговой частоты колебаний:

$$omega^2={1over LC}$$

Частота электромагнитных колебаний – формула

Рис. 2. График электрических колебаний в контуре.

Формула Томсона

Из последнего соотношения можно получить значение периода электромагнитных колебаний:

$$T={2piover omega}={2pisqrt{LC}}$$

Данная формула впервые была получена У. Томсоном и носит его имя.

Частота электромагнитных колебаний – формула

Рис. 3. У. Томсон (Кельвин).

Из данной формулы можно видеть, что время одного колебания (период) тем дольше, тем больше индуктивность и емкость. Это происходит потому, что большая емкость требует больше времени для полной зарядки. А большая индуктивность при изменении тока порождает большую ЭДС самоиндукции, которая, согласно правилу Ленца, направлена так, чтобы сопротивляться причине, ее порождающей. Таким образом, ток через большую индуктивность меняется медленнее, что также увеличивает период колебаний.

Во многих случаях удобнее использовать формулу частоты электромагнитных колебаний, которая получается из формулы Томсона, если учесть, что период и частота – взаимно обратны:

$$nu ={1over 2pisqrt{LC}}$$

Что мы узнали?

Простейшей системой, в которой возможны электромагнитные колебания, является колебательный контур, состоящий из катушки индуктивности и конденсатора. Частота электромагнитных колебаний в контуре может быть получена из значений емкости конденсатора и индуктивности катушки с использованием формулы Томсона.

Предыдущая
ФизикаЦиклическая частота колебаний – формула
Следующая
ФизикаУравнение гармонических колебаний – вывод формулы
Помогли? Поставьте оценку, пожалуйста.
Плохо
0
Хорошо
0
Супер
0
Спринт-Олимпик.ру
Мы в ВК, подпишись на нас!

Подпишись на нашу группу в ВКонтакте, чтобы быть в курсе выхода нового материала...

Вступить
×