Пересечение и объединение множеств – свойства, операции и примеры решения

Математика часто оперирует абстрактными объектами, для задания связи между которыми существуют различные операции, такие как пересечение и объединение множеств.

Понятие множества является интуитивным, не определяемым. Оно обычно ассоциируется с набором чего-либо, группой каких-то предметов или живых объектов, совокупностью некоторых условий, рассматривается как класс, семейство в некоторой классификации, промежуток числовой прямой. Например, в геометрии рассматриваются линии как множества точек.

То, из чего состоит множество, называется его элементами.

Графическим изображением, служащим для наглядности рассматриваемых объектов, является круг Эйлера.

Что такое пересечение множеств

Для любого набора множеств их пересечением называется множество, состоящее из всех элементов, принадлежащих одновременно каждому из заданных. Другими словами, это совокупность всех общих элементов.

С помощью кругов Эйлера-Венна пересечение можно изобразить так:

Пересечение и объединение множеств - свойства, операции и примеры решения

Знак пересечения: ∩.

Часто применяется для определения решений систем уравнений и неравенств.

Ассоциируется с обычным умножением двух числовых объектов.

Что такое объединение множеств

Для любого набора множеств, их объединением называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из заданных.

Изображение кругами Эйлера выглядит следующим образом:

Пересечение и объединение множеств - свойства, операции и примеры решения

Знак объединения: ∪.

Часто используется при решении уравнений и неравенств, подчёркивая наличие серий корней и решений, нескольких используемых промежутков числовой прямой.

В обычной математике близко по смыслу с операцией, называемой «сложение».

Свойства пересечения и объединения множеств

Для решения задач нужно знать о следующих свойствах:

Пересечение и объединение множеств - свойства, операции и примеры решения

1. Коммутативность (перестановочность):

A ∩ B = B ∩ A;

A ∪ B = B ∪ A.

Эти свойства распространяются на любое количество компонентов. Следуют из определения операций.

2. Ассоциативность (расстановка скобок):

(A ∩ B) ∩ C = A ∩ (B ∩ C);

(A ∪ B) ∪ C = A ∪ (B ∪ C).

Данные свойства также применимы к большому количеству компонентов. Позволяют опускать скобки и упрощать запись.

3. Дистрибутивность (раскрытие скобок):

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C);

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).

4. Закон идемпотентности (идентичности):

A ∩ A = A;

A ∪ A = A.

Множество, не содержащее ни одного элемента, называется пустым. Обозначается перечёркнутым нулём: Ø

Выполнение операций с Ø:

A ∩ Ø = Ø;

A ∪ Ø = Ø.

Прослеживается аналог со сложением и умножением на ноль.

Операции над множествами

Помимо объединения и пересечения существуют другие операции:

Для двух множеств A и B можно определить их разность как набор элементов, входящих в A и не содержащихся в B:

Пересечение и объединение множеств - свойства, операции и примеры решения

(AB)

Рассматривая некоторое множество в качестве содержащего все остальные, можно прийти к понятию «дополнение», как к совокупности всех элементов, не входящих в A:

Пересечение и объединение множеств - свойства, операции и примеры решения

Благодаря этой операции свойства объединения и пересечения можно расширить/

Закон де Моргана:

Пересечение и объединение множеств - свойства, операции и примеры решения

Пересечение и объединение множеств - свойства, операции и примеры решения

Примеры решения задач

Задача №1

B  A, B ∪ A. 

Пусть

Пересечение и объединение множеств - свойства, операции и примеры решения

Выписать все элементы множества

Пересечение и объединение множеств - свойства, операции и примеры решения

где

Пересечение и объединение множеств - свойства, операции и примеры решения

Решение.

При поиске M операции выполняются последовательно.

B A состоит из всех элементов B, которые не принадлежат A, поэтому:

Пересечение и объединение множеств - свойства, операции и примеры решения

B ∪ A включает в себя все элементы, принадлежащие хотя бы одному из множеств A или B. Таким образом:

Пересечение и объединение множеств - свойства, операции и примеры решения

M = (B A) (B ∪ A) состоит из всех элементов B A, которые не принадлежат B ∪ A, следовательно, M = Ø. 

Задача №2

Доказать методом включений тождество:

Пересечение и объединение множеств - свойства, операции и примеры решения

Решение.

Необходимо доказать выполнение включений:

Пересечение и объединение множеств - свойства, операции и примеры решения

и

Пересечение и объединение множеств - свойства, операции и примеры решения

Шаг 1.

Выбирается произвольный x из (A ∩ B) ∪ C. По определению операции объединения x ∈ B ∩ A или x ∈ C.

Если x ∈ B ∩ A, то по определению пересечения x ∈ B и x ∈ A.

Так как x ∈ A, то x ∈ C ∪ A; так как x ∈ B, то x ∈ C ∪ B, следовательно, x ∈ (A ∪ C) ∩ (B ∪ C).

Если x ∈ C, то x ∈ C ∪ A и x ∈ C ∪ B, а значит: x ∈ (A ∪ C) ∩ (B ∪ C).

Поскольку x ∈ (A ∩ B) ∪ C был выбран произвольно, утверждается, что любой элемент этого множества содержится в (A ∪ C) ∩ (B ∪ C), то есть:

Пересечение и объединение множеств - свойства, операции и примеры решения

Шаг 2.

Выбирается произвольный y из (A ∪ C) ∩ (B ∪ C).

По определению операции пересечения y ∈ C ∪ A и y ∈ C ∪ B.

Так как y ∈ C ∪ A, то y ∈ A или y ∈ C; так как y ∈ C ∪ B, то y ∈ C или y ∈ B. Таким образом, y ∈ C или y ∈ A и y ∈ B.

Если y ∈ A и y ∈ B, то y ∈ B ∩ A, а, следовательно, y ∈ (A ∩ B) ∪ C; если y ∈ C, то также y ∈ (A ∩ B) ∪ C.

Поскольку y из (A ∪ C) ∩ (B ∪ C) выбирался произвольно, утверждается, что любой элемент этого множества содержится в (A ∩ B) ∪ C, то есть

Пересечение и объединение множеств - свойства, операции и примеры решения

Шаг 3.

Из пунктов 1 и 2 вытекает, что

Пересечение и объединение множеств - свойства, операции и примеры решения

Доказано.

Предыдущая
АлгебраУгол между прямыми определение, формула нахождения между скрещивающимися прямыми, методы и примеры решения задач
Следующая
АлгебраДеление многочлена на многочлен – правило и примеры
Помогли? Поставьте оценку, пожалуйста.
Плохо
1
Хорошо
0
Супер
0
Мы в ВК, подпишись на нас!

Подпишись на нашу группу в ВКонтакте, чтобы быть в курсе выхода нового материала...

Вступить